Modeling of large-scale CFB boilers - an update of the Chalmers activities

David Pallarès

Filip Johnsson

Dept. of Energy and Environment Div. of Energy Conversion Chalmers University of Technology

Outline of presentation

Overall CFB models

Aims of overall CFB modeling

- Comprehensive
- Universal
- Entire CFB loop
- Consistent operation-directed I/O scheme
- Reasonable calculation time
- Several solid fractions and their PSD's

Scope: Large-scale CFB units

Overall CFB model

Chalmers University of Technology

Fuel mixing&conversion

CFB modeling fields

Overall CFB model

Modeling of fluiddynamics

Submodels used

Two-phase flow theory adapted to CFB

Cluster and dispersed solid phases

- 2 Core/annulus flow structure Particle interactions
- Ballistic movement
 Backflow effect (correlation)
- 4 Acceleration effects
- 5 Separation efficiency & pressure drop
- 6 Two-phase flow theory adapted to SFB

Riser mesh

Exit zone – Backflow effect

Overall CFB model

Return leg – Pressure balance

Overall CFB model

Model results (solids mixing)

VS

Experimental data

Solids concentration profiles

1000

PSD evolution

1000

1000

Dense bed

Particle seal

Freeboard (Core, h=6 m.)

500

Fuel mixing&conversion

Overall CFB model

PSD evolution

Overall CFB model

Ongoing work

Modeling of fuel mixing and conversion

- Phisycal properties changing continuously due to particle conversion: d_p , ρ_f , $u_t = f(t)$
- Horizontal gradients \rightarrow 3-dimensional

Fuel mixing experiments

Overall CFB model

Solids mixing

Model for fuel mixing

	Vertical	Horizontal
Disperse phase	Core-annulus Exponential decay, <i>K</i>	Core-annulus Lateral differential flow
Cluster phase	Ballistic Exponential decay, <i>a</i>	Assumed diffusion
Bottom bed	Perfect mixing	Assumed diffusion

Overall CFB model

Assumption for disperse phase

Circular cross section

Rectangular cross section

Overall CFB model

Solids mixing

Model for fuel conversion

Main assumptions

- Fuel particle approximated to an ideal geometry (∞-plane, ∞-cylinder, sphere)
- Quasi-steady state
- Convection term shown to be neglectable

Continuous feeding as sum of batches

Overall CFB model

Solids mixing

Chalmers University of Technology

Continuous feeding as sum of batches

Sum of time-delayed batches

Overall CFB model

Solids mixing

Fuel concentration in bottom bed

Overall CFB model

Solids mixing

Chalmers University of Technology

Fuel concentration in freeboard

Bituminous coal

Overall CFB model

Solids mixing

Chalmers University of Technology

CHALMERS

Model vs Experiments

 m_{fuel} = 0.303 kg/s = 9.43 MW Ρ

Volatiles (wt% daf)	40.2	
Proximate analysis (wt% a.r.)		
Combustibles	74.2	
Ash	8.9	
Moisture	16.9	
Ultimate analysis (wt% daf)		
С	78.4	
н	5.5	
0	12.7	
S	1.84	
N ,	1.60	
Heating value (MJ/kg low, daf)	31.09	

Overall CFB model

Solids mixing

Acknowledgements

 This work is sponsored by the Swedish National Board of Energy Administration and Kvaerner Power (in separate projects)

David Pallarèsdavid.pallares@chalmers.seFilip Johnssonfijo@chalmers.seDepartment of Energy and Environmentwww.entek.chalmers.seChalmers University of Technologywww.chalmers.se

Fragmentation